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Agreement Number: W911NF0910391
“Determining the Complexity of the Quantum Adiabatic
Algorithm using Quantum Monte Carlo simulations”
Principal Investigator: A. Peter Young

1 Introduction

This project is to study whether an eventual quantum computer could solve optimization
problems more efficiently than a classical computer using the “quantum adiabatic algorithm”
(QAA) described below.

The grant has led to six publications [1, 2, 3, 4, 5, 6], one of which [2] is a conference
presentation. In addition, the PI presented results at nine international conferences which
did not have proceedings. Both the PI and post-doc gave additional seminars on the research.

The initial work was done in collaboration with Smelyanskiy and Sergey Knysh, and a
visiting student, Marco Guidetti participated in one of the papers, Ref. [3]. The work for
the last paper [6] started during fall 2010 when the PI was on sabbatical at MIT in the
group of Eddie Farhi (whose group invented the QAA in 2001). This paper [6] involved
a collaboration of Farhi, his student David Gosset, Peter Shor (also at MIT), Francesco
Zamponi from Paris, and Anders Sandvik from Boston University, in addition to the PI and
post-doc.

Since the detailed results are in the papers, it does not seem to be necessary to repeat
them all here. Rather I will give a general introduction followed by comments on the work
in each of the papers. Naturally the papers also include a much larger bibliography.

For some specialized problems, such as factoring large integers, which is relevant for
cryptography, a quantum computer is known to be much more efficient than a classical
computer [7, 8]. The present project investigated whether, in addition, a quantum computer
could solve a wide range of hard “optimization” problems more efficiently than a classical
computer using the quantum adiabatic algorithm (QAA) [9]. The main technique used was
Quantum Monte Carlo (QMC) simulations, which both the PI and the post-doc are very
familiar with. Exact diagonalization was also used in some of the work. In addition, a
comparison was made between the results from the QAA and a classical heuristic algorithm
called WalkSAT.

In the QAA, a quantum Hamiltonian is realized by the connections in a quantum com-
puter. A time-dependent control parameter, s(t), (0 < s(t) < 1), is smoothly varied, taking
the system from a “driver Hamiltonian” Hp, which is easy to solve, at t = 0 (s(0) = 0),
to the non-trivial “problem Hamiltonian” of interest Hp at time 7 (s(7) = 1). The total
Hamiltonian is therefore

H(t) = [1 — s(t)|Hp + s(t)Hp. (1)

For Hp we consider binary optimization problems expressed in terms of classical bits z; =
(0, 1), which we represent by Ising spins taking values o7 = 1 — 2z; = (1, —1). The simplest
driver Hamiltonian is then

N
HD - _hzafv (2)
i=1

where o7 is the z-component Pauli matrix and & is a “transverse field”.



The quantum computer is started in the (trivial) ground state of the driver Hamiltonian
and, if the process is slow enough to be adiabatic, it ends up in the ground state of the
problem Hamiltonian, which solves the problem. The time taken to do this, 7, is called the
complexity. Since the process is slow and smooth, it is easier to screen out noise, which would
destroy quantum coherence, in the QAA than in other quantum algorithms, which proceed
by a series of discrete unitary transformations. Hence there is a substantial experimental
effort to build a quantum computer to implement the QAA. In particular, D-Wave has built a
quantum annealer with over 100 qubits to implement the QAA. One of these will be installed
at NASA-Ames, with financial support from Google. The PI on supported by the grant, Itay
Hen, now at NASA-Ames, will provide theoretical support for this project.

An important class of optimization problems is that known as “NP-hard” [10], since
their complexity is found to grow exponentially with problem size N, and, furthermore, any
problem in a wide set, call “NP”, can be mapped into an NP-hard problem in polynomial
time.

A bottleneck will be where the gap between the ground state and the first excited state
becomes very small, since the time needed to maintain adiabatic evolution is proportional
to the square of the inverse of the minimum gap. The QMC simulations compute the gap as
a function of the control parameter s for each instance, locate its minimum value, and see
how the minimum gap, averaged in some suitable way, varies with system size.

The funding was mainly used to support a full-time post-doc, Itay Hen. Some funding
was also used for summer salary for the PI, and for travel to conferences. In the first year,
some computers were bought to increase the computer power available for the project. The
post-doc is continuing to work on related problems as a staff scientist at NASA Ames under
the supervision of Vadim Smelyanskiy.

1.1 Reference [1]

This paper, in collaboration with Vadim Smelyanskiy and Sergey Knysh, studied a particular
constraint satisfaction problem called exact cover using quantum Monte Carlo simulations.
It was found that, as the size increases, there is a first order (i.e. discontinuous) quantum
phase transition during the evolution of the QAA for instances of size greater than about 100.
A first order transition leads to a minimum energy gap which decreases exponentially with
problem size, and hence to an exponentially large time for the QAA to solve the problem.

1.2 Reference [2]

This is a paper presented at the Conference on Computational Physics 2009 (CCP2009) in
Kaoshing, Taiwan. CCP2009 is part of the series of conferences organized by the computa-
tional divisions of American Physical Society and the European Physical Society on Physics
Computing. This conference write up is short, because of page limitations, and is a summary

of Ref. [1].

1.3 Reference [3]

This paper was in collaboration with a visiting student, Marco Guidetti. It studied the
complexity of four constraint satisfaction problems using a classical, heuristic algorithm



called WalkSAT. The aim of this study was to get results from a classical algorithm with a
view to eventually comparing them with those from the quantum adiabatic algorithm. This
latter stage was done in Ref. [4].

Three of the four models are in the NP-hard complexity class, and one, called 3-XORSAT,
is in the P complexity class for which there exists a polynomial time algorithm. All show
exponential complexity for large sizes. Curiously, the hardest problem for WalkSAT is 3-
XORSAT, the one in P. Although it is not surprising that WalkSAT does not solve the this
problem in polynomial time, since the polynomial time algorithm is special, and is completely
unrelated to the stochastic methods in WalkSAT, it is, nonetheless, quite striking that it is
actually harder for WalkSAT than the problems in NP. The strange result that 3-XORSAT is
very “glassy” (i.e. very hard to solve by general purpose algorithms) while being easy to solve
by a special algorithm, has been discussed recently to illustrate problems in a claimed proof
by Deolalikar that P is not equal to NP, one of the major unsolved problems in mathematics.
See for example the discussion in Refs. [11, 12].

1.4 Reference [4]

This paper determined the complexity of several constraint satisfaction problems using the
quantum adiabatic algorithm in its simplest implementation. This was done, by studying
the size dependence of the gap to the first excited state of "typical” instances using QMC
simulations. The result is that, at large sizes N, the complexity increases exponentially for
all models that was studied. A comparison was made with the the complexity obtained from
the analogous classical algorithm WalkSAT which was found in Ref. [3]. It was seen that
the harder the problem is for the classical algorithm, the harder it is also for the quantum
adiabatic algorithm.

This work was selected by the American Physical Society for presentation on their web
site which spotlights exceptional research:
http://physics.aps.org/synopsis-for/10.1103/PhysRevE.84.061152.

1.5 Reference [5]

This paper proposed a method using a quantum annealer, an analog quantum computer
based on the principles of quantum adiabatic evolution, to solve the graph isomorphism
problem, in which one has to determine whether two graphs are isomorphic (i.e., can be
transformed into each other simply by a relabeling of the vertices). The paper demonstrated
the capabilities of the method by focusing on graphs with particularly high symmetry called
strongly regular graphs, though some other graphs were studied as well. This was a prelimi-
nary study so only quite small graphs were considered which could be treated by diagonaliza-
tion or a related method. In future work, it would be interesting to study larger sizes using
Quantum Monte Carlo simulations. The paper also showed that the method is applicable,
within certain limitations, to currently available quantum hardware such as D-Wave One.

1.6 Reference [6]

This paper was a collaboration of the PI and post-doc with Eddie Farhi, David Gosset,
Peter Shor, Francesco Zamponi and Anders Sandvik. In it we studied the performance of



the quantum adiabatic algorithm on random instances of two combinatorial optimization
problems, 3-regular 3-XORSAT and 3-regular max-cut (a spin glass problem). We used
quantum Monte Carlo and quantum cavity methods. Using these techniques we find that
the quantum adiabatic algorithm fails to solve either of these problems efficiently. For the
3-XORSAT problem it fails at the quantum phase transition where the energy gap has a
minimum which is exponentially small in the problem size N. For the spin glass problem
it fails beyond the quantum phase transition, i.e. in the quantum spin glass phase, where,
again, the minimum gap decreases exponentially with N.

2 Possible future work

The work supported by the grant showed that the simplest implementation of the QAA
does not seem to be more efficient for solving some classes of optimization problems than a
classical algorithm. However, there is a lot of flexibility in the method. To implement the
QAA one has to decide on a “path in Hamiltonian space”, starting with a simple Hamiltonian
for which the system can be prepared in the ground state, and ending with the specified
problem Hamiltonian. The present work just took the simplest path, in which the driver
Hamiltonian, Hp, is a sum of transverse fields, the same on all sites, and the the total
Hamiltonian is a linear combination of Hp and the problem Hamiltonian. In future work
it would be desirable to find a more clever path in Hamiltonian space to increase the value
of the minimum gap. Some ideas for that, for a problem not studied by the PI, have been
proposed in Ref. [13].

It would also be useful to develop further the possible application of quantum annealing
(QAA) to solve the graph isomorphism problem beyond the preliminary study in Ref. [5]. The
graph isomorphism problem is interesting because, like integer factoring, it is a problem for
which there is no known classical polynomial-time classical algorithm, and yet it is probably
not in the NP-hard category. Since a quantum polynomial-time algorithm has been found [7]
for integer factoring, it is worth investigating whether the same can be done for another
problem in this category, which is intermediate between P and NP-hard, namely graph
isomorphism.

In all problems discussed so far in this report, the goal has been to study the exact ground
state. For many problems of practical importance, it is not necessary to find the state of
lowest energy; rather, any state with energy close to that of the ground state will do. For
some problems, even finding an energy close to the ground state is hard [14]. It would be
worthwhile to see if the QAA could find a close-by energy more efficiently than a classical
algorithm.
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